Molecular control of the nanoscale: effect of phosphine-chalcogenide reactivity on CdS-CdSe nanocrystal composition and morphology.
نویسندگان
چکیده
We demonstrate molecular control of nanoscale composition, alloying, and morphology (aspect ratio) in CdS-CdSe nanocrystal dots and rods by modulating the chemical reactivity of phosphine-chalcogenide precursors. Specific molecular precursors studied were sulfides and selenides of triphenylphosphite (TPP), diphenylpropylphosphine (DPP), tributylphosphine (TBP), trioctylphosphine (TOP), and hexaethylphosphorustriamide (HPT). Computational (DFT), NMR ((31)P and (77)Se), and high-temperature crossover studies unambiguously confirm a chemical bonding interaction between phosphorus and chalcogen atoms in all precursors. Phosphine−chalcogenide precursor reactivity increases in the order: HPTE < TOPE < TBPE < DPPE <TPPE (E = S < Se). For a given phosphine, the selenide is always more reactive than the sulfide. CdS(1-x)Se(x) quantum dots were synthesized via single injection of a R(3)PS-R(3)PSe mixture to cadmium oleate at 250 °C. X-ray diffraction (XRD), transmission electron microscopy (TEM), and UV/Vis and PL optical spectroscopy reveal that relative R(3)PS and R(3)PSe reactivity dictates CdS(1-x)Se(x) dot chalcogen content and the extent of radial alloying (alloys vs core/shells). CdS, CdSe, and CdS(1-x)Se(x) quantum rods were synthesized by injection of a single R(3)PE (E = S or Se) precursor or a R(3)PS-R(3)PSe mixture to cadmium-phosphonate at 320 or 250 °C. XRD and TEM reveal that the length-to-diameter aspect ratio of CdS and CdSe nanorods is inversely proportional to R(3)PE precursor reactivity. Purposely matching or mismatching R(3)PS-R(3)PSe precursor reactivity leads to CdS(1-x)Se(x) nanorods without or with axial composition gradients, respectively. We expect these observations will lead to scalable and highly predictable "bottom-up" programmed syntheses of finely heterostructured nanomaterials with well-defined architectures and properties that are tailored for precise applications [corrected].
منابع مشابه
Charge separation in Pt-decorated CdSe@CdS octapod nanocrystals.
We synthesize colloidal CdSe@CdS octapod nanocrystals decorated with Pt domains, resulting in a metal-semiconductor heterostructure. We devise a protocol to control the growth of Pt on the CdS surface, realizing both a selective tipping and a non-selective coverage. Ultrafast optical spectroscopy, particularly femtosecond transient absorption, is employed to correlate the dynamics of optical ex...
متن کاملProbing Surface Saturation Conditions in Alternating Layer Growth of CdSe/CdS Core/Shell Quantum Dots
We monitor effective band gap energy shifts and free reagent concentration during the formation of CdS shells on CdSe nanocrystals to test the hypothesis that alternating addition of stoichiometric doses of precursors can effectively saturate surface sites and thereby enforce conformal shell growth. The selective ionic layer addition and reaction (SILAR) mechanism has been proposed to describe ...
متن کاملSeeded Synthesis of CdSe/CdS Rod and Tetrapod Nanocrystals
We demonstrate a method for the synthesis of multicomponent nanostructures consisting of CdS and CdSe with rod and tetrapod morphologies. A seeded synthesis strategy is used in which spherical seeds of CdSe are prepared first using a hot-injection technique. By controlling the crystal structure of the seed to be either wurtzite or zinc-blende, the subsequent hot-injection growth of CdS off of t...
متن کاملA highly reactive chalcogenide precursor for the synthesis of metal chalcogenide quantum dots.
Metal chalcogenide semiconductor nanocrystals (NCs) are ideal inorganic materials for solar cells and biomedical labeling. In consideration of the hazard and instability of alkylphosphines, the phosphine-free synthetic route has become one of the most important trends in synthesizing selenide QDs. Here we report a novel phase transfer strategy to prepare phosphine-free chalcogenide precursors. ...
متن کاملEnergy Transfer between Conjugated Colloidal Ga2O3 and CdSe/CdS Core/Shell Nanocrystals for White Light Emitting Applications
Figure S1. Photoluminescence spectra of CdSe/CdS nanocrystals (NCs) in (a) nanocrystal conjugate, linked with thioglycolic acid (TGA), upon correction for the contribution from Ga2O3 NC emission, (b) pure CdSe/CdS nanocrystal suspension, and (c) mixture of Ga2O3 and CdSe/CdS NCs without the TGA linker. The concentrations of CdSe/CdS NCs are identical in all panels, and are expressed in (a) as a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS nano
دوره 6 6 شماره
صفحات -
تاریخ انتشار 2012